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Abstract 
 

An analytic theory for the electromagnetic scattering from a perfect electromagnetic conducting (PEMC)  plane on 

which a line source has been randomly placed, is developed by using the duality transformation which was 

introduced by Lindell and Sihvola. The theory allows for the occurrence of cross-polarized fields in the scattered 

wave, a feature which does not exist in standard scattering theory. This is why the medium is named as PEMC. 
PEMC medium can be transformed to perfectly electric conducting (PEC) or perfectly magnetic condicting (PMC) 

media. As an application, plane wave reflection from a planar interface of air and PEMC medium is studied. PEC 

and PMC are the limiting cases, where there is no cross-polarized component.  
 

1   Introduction 
 

In the early theories of Young, Fresnel, and Kirchhoff, the diffracting obstacle was supposed to be perfectly black, 

that is to say, all radiations falling on it was assumed to be absorbed and non reflected. This is an inherent source of 
ambiguity in that such a concept of absolute blackness cant legitimately be defined with precision. It is indeed, 

incomparable with electromagnetic theory. The problem we are considering, i.e., scattering from half plane, strip or 

grating are very well known in the field of electromagnetics [1]. Main aim is not to resolve these problems but 
introduce few random parameters in these planner boundaries for the PEC cases and to study the effects of the 

stochastic nature of these boundaries on the scattered field. Before to examine the random boundaries, i.e., 

scatterers with random parameters it is instructive to examine the behavior of randomly placed line source, because 

in two dimensional planner perfectly conducting boundaries, with sharp edges. An effort has been made to 
approximate edge diffraction by line source, in far zone. In this paper, the solution for the following average 

scattered field has been transformed from pec to pemc randomly placed line source.  
 

2   Formulation Of The Problem 
 

The geometry of line source is shown in the Fig.(1), 
 

 
 

Figure  1: Geometry of the problem 
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where it has been assumed that its length extends to infinity and electric current is represented by 𝐼 = 𝑎 𝑧𝐼0, where 

𝐼0  is constant. The electric field at point 𝑃(𝑟,𝜙) due to this line source can be written as, [2].  

 𝐸 = 𝐸𝑧𝑎 𝑧 = −𝐼0
𝜔𝜇

4
𝐻0

1(𝑘𝑅)𝑎 𝑧  (1) 
 

where 𝑅 =  𝑟2 + 𝑟′2 − 2𝑟𝑟′cos(𝜙 − 𝜙′) and (𝑟′,𝜙′) is source location. In the present work, the exact location of 

the randomly placed random width strip is unknown provided its probabilistic knowledge only, i.e, according to 

statistical theory 𝑟′ and 𝜙′ are random variables, and the field 𝐸(𝑟,𝜙) is a function of these random variables. 

Due to randomness in source location, the radiated field is also random. Here, main thing is the statistics of this 

𝐸-field, at least in the first two moments. 
 

Consider the case when only 𝑟′ is random with certain probability density function 𝑃𝑟′(𝑟′) and 𝜙′ is deterministic. 

𝐸𝑧 in the far zone (𝑟 >> 𝑟′) can be written as,  

 𝐸𝑧 = −𝐼0
𝜔𝜇

4
 

2

𝑖Π

𝑒 𝑖𝑘𝑅

 𝑘𝑅
 (2) 

 where 𝑅; 𝑟 − 𝑟′cos𝜓 and 𝜓 = 𝜙 − 𝜙′. 
Further, above expression can be shown Mathematically as  

 𝐸𝑧 = −𝐼0
𝜔𝜇

4
 

2

𝑖𝜋

𝑒 𝑖𝑘𝑟

 𝑘𝑟
𝑒−𝑖𝑘𝑟 ′cos𝜓  (3) 

 

Here 𝑟′ is random variable with probability density function 𝑃𝑟′(𝑟′). Making use of statistics of source location,the 

average 𝐸-field can be calculated as  

 < 𝐸𝑧 >= −𝐼0
𝜔𝜇

4
 

2

𝑖𝜋

𝑒 𝑖𝑘𝑟

 𝑘𝑟
< 𝑒−𝑖𝑘𝑟 ′cos𝜓 > (4) 

 

where  

 < 𝑒−𝑖𝑘𝑟 ′cos𝜓 >=  
∞

−∞
𝑒−𝑖𝑘𝑟 ′cos𝜓𝑃𝑟′(𝑟′)𝑑𝑟′ (5) 

 The second moment of this field will be  

 < |𝐸𝑧|2 >=< 𝐸𝑧𝐸𝑧
∗ >; 𝐼0

2 (𝜔𝜇 )2

8𝜋

1

𝑘𝑟
 (6) 

 and the variance of the field can be evaluated as  

 𝑣𝑎𝑟(𝐸𝑧) =< |𝐸𝑧|2 > −(< 𝐸𝑧 >)2. (7) 

 Consider 𝑟′ be exponentially distributed random variable with probability density function given by  

 𝑃𝑟′(𝑟′) = 𝜆𝑒−𝜆𝑟 ′, 𝑟′ ≥ 0 (8) 

 where 𝜆 = 1/𝑟′ and < 𝑟′ > is the average value of 𝑟′. Using the probability density function  

 < 𝑒−𝑖𝑘𝑟 ′cos𝜓 >= 𝜆  
∞

0
𝑒−𝑖𝑘𝑟 ′cos𝜓 =

1

1+𝑖𝑘<𝑟′cos𝜓>
 (9) 

 

Now using this result in above equation, the average field can be written as  

 < 𝐸𝑧 >= −𝐼0
𝜔𝜇

4
 

2

𝑖𝜋

𝑒 𝑖𝑘𝑟

 𝑘𝑟

1

1+𝑖𝑘<𝑟′>𝑐𝑜𝑠𝜓
 (10) 

 

Taking the modulus square of the above equation, the expression is given below. 
 

 | < 𝐸𝑧 > |2 = 𝐼0
2 (𝜔𝜇 )2

8

1

𝜋

𝑒 𝑖𝑘𝑟

 𝑘𝑟

1

1+𝑘2<𝑟′>cos 2𝜓
 (11) 

 

and the variance of 𝐸𝑧 field can be written as  

 𝑉𝑎𝑟(𝐸𝑧) = 𝐼0
2 (𝜔𝜇 )2

8

1

𝜋

𝑒 𝑖𝑘𝑟

 𝑘𝑟

𝑘2<𝑟′>cos 2𝜓

1+𝑘2<𝑟′>cos 2𝜓
 (12) 

 

Now consider the case when both 𝑟′ and 𝜙′ are random. We assume that when both 𝑟′ and 𝜙′ are staistically 

independent random variable. Also assume that 𝜙′ is uniformly distributed,i.e. probability density function of 𝜙′ 

is given by, 
 

 𝑃𝜙 ′(𝜙′) =
1

2𝜋
, 0 ≤ 𝜙′ < 2𝜋 (13) 
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Due to a statistical independence assumption the joint probability density function of 𝑟′ and 𝜙′ will be 
 

 𝑃𝜙 ′𝑟′(𝜙
′, 𝑟′) = 𝑃𝑟′(𝑟′)𝑃𝜙 ′(𝜙′) (14) 

 By calculating the average field as 
 

 < 𝐸𝑧 >= −𝐼0
𝜔𝜇

4
 

2

𝑖𝜋

𝑒 𝑖𝑘𝑟

 𝑘𝑟
< 𝑒−𝑖𝑘𝑟 ′cos (𝜙−𝜙 ′) > (15) 

 In this case < 𝑒−𝑖𝑘𝑟 ′cos𝜓 > will become 
 

 < 𝑒𝑖𝑘𝑟 ′cos𝜓 >=  
∞

−∞
 
∞

−∞
𝑃𝜙 ′𝑟′(𝜙

′, 𝑟′)𝑒−𝑖𝑘𝑟
′cos (𝜙−𝜙 ′)𝑑𝑟′𝑑𝜙′ (16) 

  

 < 𝑒−𝑖𝑘𝑟 ′cos𝜓 >=  
∞

−∞
𝑃𝑟′(𝑟′) 

∞

−∞
𝑒−𝑖𝑘𝑟 ′cos (𝜙−𝜙 ′)𝑑𝜙′𝑑𝑟′ (17) 

 By using the Bessel Function identity  

 𝐽0(𝑎) =
1

2𝜋
 

2𝜋

0
𝑒−𝑖𝑎 cos (𝜙−𝜙 ′)𝑑𝜙′, (18) 

and the result  

  
∞

0
𝐽0(𝑘𝑟′)𝑒−𝜆𝑟 ′𝑑𝑟′ =

1

 𝑘2+𝜆2
 (19) 

we can write 

 

 < 𝑒−𝑖𝑘𝑟
′cos𝜓 >=

𝜆

 𝑘2+𝜆2
=

1

 1+𝑘2<𝑟′>2
. (20) 

 Hence the avaerage scattered field can be written as 
 

 < 𝐸𝑧 >;−𝐼0
𝜔𝜇

4
 

2

𝑖𝜋

𝑒 𝑖𝑘𝑟

 𝑘𝑟

1

 1+𝑘2<𝑟′>2
 (21) 

and the variance can be calculated as,  

 𝑣𝑎𝑟(𝐸𝑧) = 𝐼0
2 (𝜔𝜇 )2

8𝜋

1

𝑘𝑟
(

𝑘2<𝑟′>2

1+𝑘2<𝑟′>2) (22) 
 

It is observed that average field and its variance are independent of 𝜙. The above average scattered field can be 

transformed from perfectly electric conducting case to perfectly electromagnetic conducting case by the following 
theory. The Concept of PEMC introduced by Lindell and Sihvola [3, 4] is a generalization of both PEC and PMC. 

An analytic theory for the electromagnetic scattering from a PEMC plane where a line source has been placed 

randomly, is developed. The PEMC medium characterized by a single scalar parameter 𝑀, which is the admittance 

of the surface interface, where 𝑀 = 0 reduces the PMC case and the limit 𝑀 → ±∞ corresponds to the perfect 

electric conductor (PEC) case. The theory allows for the occurrence of cross-polarized fields in the scattered wave 

in the scattered wave, a feature which does not exist in standard scattering theory. This means that PEC and PMC 

are the limiting cases, for which there is no cross-polarized component. Because the PEMC medium does not allow 
electromagnetic energy to enter, an interface of such a medium behaves as an ideal boundary to the electromagnetic 

field. At the surface of a PEMC media, the boundary conditions between PEMC medium and air with unit normal 

vector 𝑛, are of the more general form. Because tangential components of the 𝐸 and 𝐻 fields are continuous at 

any interface of two media, one of the boundary conditions for the medium in the air side is 𝑛 × (𝐻 + 𝑀𝐸) = 0, 

because a similar term vanishes in the PEMC-medium side. The other condition is based on the continuity of the 

normal component of the 𝐷 and 𝐵 fields which gives another boundary condition as 𝑛. (𝐷 −𝑀𝐵) = 0. 

Here, PEC boundary may be defined by the conditions  

 𝑛 × 𝐸 = 0,        𝑛.𝐵 = 0 (23) 

 While PMC boundary may be defined by the boundary conditions  

 𝑛 × 𝐻 = 0,        𝑛.𝐷 = 0 (24) 
 

where 𝑀 denotes the admittance of the boundary which is characterizes the PEMC. For 𝑀 = 0, the PMC case is 

retrieved, while the limit 𝑀 → ±∞ corresponds to the PEC case. Possibilities for the realization of a PEMC 

boundary have also been studied [5]. 
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It has been observed theoretically that a PEMC material acts as a perfect reflector of electromagnetic waves, but 

differs from the PEC andthe PMC in that the reflected wave has a cross-polarized component. The duality 
transformations of perfectly electric condutor (PEC) to PEMC have been studied by many researchers [3, 4, 5, 6, 7, 

8, 9]. Here we present an analytic scattering theory for a PEMC step, which is a generalization of the classical 

scattering theory. 
 

Applying a duality transformation which is known to transform a set of fields and sources to another set and the 

medium to another one. In its most general form, the duality transformation can be defined as a linear relation 
between the electromagnetic fields. The effect of the duality transformation can be written by the following special 

choice of transformation parameters:  

  
𝐸𝑑
𝐻𝑑

 =  
𝑀𝜂0 𝜂0
−1

𝜂0
𝑀𝜂0

  𝐸
𝐻

  (25) 

 has the property of transforming PEMC to PEC, while  

  𝐸
𝐻

 =
1

(𝑀𝜂0)2+1
 
𝑀𝜂0 −𝜂0
1

𝜂0
𝑀𝜂0

  
𝐸𝑑
𝐻𝑑

  (26) 

 has the property of transforming PEC to PEMC [4]. 
Following the above relations [3], the transformed equations becomes as  

 𝐸𝑟 = −
1

𝑀2𝜂0
2+1

 (−1 + 𝑀2𝜂0
2)𝐸𝑖 + 2𝑀𝜂0𝑢𝑧 × 𝐸𝑖  (27) 

 

 

 𝐸𝑠𝑑 = −(𝑀𝜂0𝐸𝑠 + 𝜂0𝐻𝑠) (28) 

  

 𝐻𝑠𝑑 = −
1

𝜂0
𝐸𝑠 + 𝑀𝜂0𝐻𝑠  (29) 

 
 

 𝐸𝑠 =
1

(𝑀𝜂0)2+1
 𝑀𝜂0𝐸𝑠𝑑 − 𝜂0𝐻𝑠𝑑   (30) 

 

 

 𝐸𝑠 =
1

(𝑀𝜂0)2+1
 ((𝑀𝜂0)2 − 1)𝐸𝑠 − 2𝑀𝜂0

2𝐻𝑠  (31) 

 

 

 𝐸𝑠 =
1

(𝑀𝜂0)2+1
 ((𝑀𝜂0)2 − 1)𝐸𝑠 − 2𝑀𝜂0𝐸𝑠  (32) 

 

Where 𝐸𝑠, 𝐻𝑠  are transformed pemc average fields and 𝐸𝑠𝑑 , 𝐻𝑠𝑑  are average scattered elecric and magnetic fields 

respectively. 
 

This means that, for a linearly polarized incident field 𝐸𝑖 , the reflected field from a such a boundary has a both 

co-polarized component, while 𝑢𝑧 × 𝐸𝑖  is a cross-polarized component, in the general case. For the PMC and PEC 

special cases (𝑀 = 0 and 𝑀 = ±∞ respectively), the cross-polarized component vanishes. For the special PEMC 

case 𝑀 =
1

𝜂0
, such that 

 (𝐸𝑟 = −𝑢𝑧 × 𝐸𝑖) (33) 
 

which means that the reflected field appears totally cross-polarized. It is obvious theoretically that a PEMC material 

acts as a perfect reflector of electromagnetic waves, but differs from the PEC (𝐸𝑟 + 𝐸𝑖) = 0 and 𝐻𝑟 = 𝐻𝑖) and 

PMC ( 𝐸𝑟 = 𝐸𝑖  and 𝐻𝑟 + 𝐻𝑖 = 0) in that the reflected wave has a cross-polarized component. 
 

3  Concluding remarks 
 

In this work, a plane wave scattering by a perfect electromagnetic conducting plane on which a line source has been 

randomly placed, has been studied.  
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The theory provides explicit analytical formulas for the electric and magnetic field. An other formulla has been 

derived for the relative contributions to the scattered fields of the co-polarized and the crosspolarized fields depend 

on parameter 𝑀. The cross-polarized scattered fields vanish in the PEC and PMC cases, and are maximal for 

𝑀 = ±1. In the general case,the reflected wave has both a co-polarized and a cross-polarized component. The 

above transformed solution presents an analytical theory for the scattering of a perfect electromagnetic plane for a 

randomly placed line source. It is clear from the above discussion that for 𝑀 → ∞ and 𝑀 → 0 correspond to the 

PEC and PMC respectively. Moreover, for 𝑀 = ±1 the medium reduces to PEMC. 
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